132 research outputs found

    Real Space Observations of Magnesium Hydride Formation and Decomposition

    Full text link
    The mechanisms of magnesium hydride formation and thermal decomposition are directly examined using in-situ imaging.Comment: 3 pages, 4 figure

    Looking at electronic wave functions on metal surfaces

    Get PDF
    The project described here is not only a beautiful example of the visual side tophysics, it is also a beautiful example of international cooperation. The first use of the idea—to apply a Fourier transform to STM pictures to see electron waves instead of just the surface atoms—came out of a collaboration between Plummer, Sprunger and the Aarhus group headed by Besenbacher. Hofman, who had beenworking at Tennessee, took Be(1010) samples to Berlin where the images shown in this pictorial were taken. All of the participants are now preparing a paper on the use of a Fourier transform to map the Fermi contour at metal surfaces

    Hybrid Online Delivery of a Pharmacy Residency and Fellowship Elective Course

    Get PDF
      Objective: To describe and evaluate the transition of a pharmacy residency and fellowship (PRF) elective course to a hybrid online platform. Innovation: In 2016, the 1-credit hour PRF elective was transitioned from a live, synchronous course to a hybrid online platform. Over the course of the semester, students completed eight modules along with assignments that pertained to a different component of PRF. Course grades and evaluations, as well as PRF placement rates, were compared between 2015 (live, synchronous course) and 2016 (hybrid online course). There were no differences in overall course grades or student evaluations of individual relevant course objectives between the two course formats. However, more students rated the course as excellent during the 2015 live, synchronous course. Placement rates were similar between students who took the course in 2015 and 2016. Critical Analysis: Following the transition of a PRF elective to a hybrid online platform, course grades, evaluation of individual relevant course objectives, and PRF placement rates remained similar to previous years. Creative educational venues can help meet the student demand while simultaneously allowing faculty to manage their time. However, instructors should balance this with desire of students to have more face-to-face in class time.     Type: Not

    Quasi-particle interference and superconducting gap in a high-temperature superconductor Ca2-xNaxCuO2Cl2

    Full text link
    High-transition-temperature (high-Tc) superconductivity is ubiquitous in the cuprates containing CuO2 planes but each cuprate has its own character. The study of the material dependence of the d-wave superconducting gap (SG) should provide important insights into the mechanism of high-Tc. However, because of the 'pseudogap' phenomenon, it is often unclear whether the energy gaps observed by spectroscopic techniques really represent the SG. Here, we report spectroscopic imaging scanning tunneling microscopy (SI-STM) studies of nearly-optimally-doped Ca2-xNaxCuO2Cl2 (Na-CCOC) with Tc = 25 ~ 28 K. They enable us to observe the quasi-particle interference (QPI) effect in this material, through which unambiguous new information on the SG is obtained. The analysis of QPI in Na-CCOC reveals that the SG dispersion near the gap node is almost identical to that of Bi2Sr2CaCu2Oy (Bi2212) at the same doping level, while Tc of Bi2212 is 3 times higher than that of Na-CCOC. We also find that SG in Na-CCOC is confined in narrower energy and momentum ranges than Bi2212. This explains at least in part the remarkable material dependence of TcComment: 13pages, 4fig

    Scanning tunneling microscopy and spectroscopy at low temperatures of the (110) surface of Te doped GaAs single crystals

    Full text link
    We have performed voltage dependent imaging and spatially resolved spectroscopy on the (110) surface of Te doped GaAs single crystals with a low temperature scanning tunneling microscope (STM). A large fraction of the observed defects are identified as Te dopant atoms which can be observed down to the fifth subsurface layer. For negative sample voltages, the dopant atoms are surrounded by Friedel charge density oscillations. Spatially resolved spectroscopy above the dopant atoms and above defect free areas of the GaAs (110) surface reveals the presence of conductance peaks inside the semiconductor band gap. The appearance of the peaks can be linked to charges residing on states which are localized within the tunnel junction area. We show that these localized states can be present on the doped GaAs surface as well as at the STM tip apex.Comment: 8 pages, 8 figures, accepted for publication in PR

    Electronic properties and Fermi surface of Ag(111) films deposited onto H-passivated Si(111)-(1x1) surfaces

    Full text link
    Silver films were deposited at room temperature onto H-passivated Si(111) surfaces. Their electronic properties have been analyzed by angle-resolved photoelectron spectroscopy. Submonolayer films were semiconducting and the onset of metallization was found at a Ag coverage of \sim0.6 monolayers. Two surface states were observed at Γˉ\bar{\Gamma}-point in the metallic films, with binding energies of 0.1 and 0.35 eV. By measurements of photoelectron angular distribution at the Fermi level in these films, a cross-sectional cut of the Fermi surface was obtained. The Fermi vector determined along different symmetry directions and the photoelectron lifetime of states at the Fermi level are quite close to those expected for Ag single crystal. In spite of this concordance, the Fermi surface reflects a sixfold symmetry rather than the threefold symmetry of Ag single crystal. This behavior was attributed to the fact that these Ag films are composed by two domains rotated 60o^o.Comment: 9 pages, 8 figures, submitted to Physical Review
    corecore